PHOTOCHEMICAL SYNTHESIS OF DEUTERIUM LABELLED 4-N-SUBSTITUTED CYTOSINES

Lech Celewicz, Jarosław Spychała and Krzysztof Golankiewicz[#] Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6

60-780 Poznań, Poland

Summary

The efficient photochemical method for the preparation of 4-N-(1-deuterio-alkyl)cytosines using as precursors 4-N-(1-carboxy-alkyl)cytosines is described.

Key words: 4-N-(1-deuterio-alkyl)cytosines, photodecarboxylation.

Cytosine derivatives have received considerable attention due to antiviral and anticancer properties of the corresponding nucleosides^{4,2}. Among the large number of known cytosine analogs, 4-N-substituted derivatives are of interest as naturally occurring constituents of $t-RNA^8$. We have recently reported that 4-N-(1-carboxy-alkyl)cytosines undergo remarkably efficient photochemical decarboxylation to give the proper 4-N-substituted cytosines⁴.

The present paper describes photochemical synthesis of 4-N-(1-deuterio-alkyl) cytosines. Ultraviolet irradiation with wavelengths longer than 290 nm in deuterium oxide-acetone (1:1, ν/ν) solution of compounds <u>la-f</u>^{4,5} and methanol-d-acetone (3:7, ν/ν) solution of <u>lg⁵</u> resulted in formation of photoproducts <u>2a-g</u> containing a deuterium at the position formerly occupied by the carboxyl.

^{*} To whom correspondence should be addressed.

The irradiation of $4-N-(1-\operatorname{carboxy}-2-\operatorname{hydroxyethyl})$ cytosine <u>1d</u> has to be carefully controled by tlc chromatography because initially produced <u>2d</u> under prolonged irradiation undergoes futher photochemical reaction to give 4-N-methylcytosine. However it was possible to obtain <u>2d</u> in 45% yield. In case of photolysis of $4-N-(1,2-\operatorname{dicarboxy}-ethyl)$ cytosine <u>1e</u> only carboxyl group at the 1 position is decarboxylated and $4-N-(1-\operatorname{deuterio}-2-\operatorname{carboxy}-ethyl)$ cytosine <u>2e</u> is photochemically stable.

Thus photodecarboxylation the of 4-N-(1-carboxy-alkyl)cytosines in the deuterium presence of oxide offers an experimentally simple method to prepare 4-N-(1-deuterio-alky1)cytosines of high isotopic purity in good yield. The isotopic purity of obtained compounds 2a-g determined as NMR by spectroscopy was higher than 97%.

In conclusion, we have developed a highly efficient method for the synthesis of the specifically deuterated 4-N-substituted cytosines. The utility of the procedure was demonstrated by the synthesis of seven 4-N-(1-deuterio-alkyl) cytosines.

<u>2a</u> :

EXPERIMENTAL

Elemental analyses were made on an Elemental Analyser Perkin-Elmer 240. ⁴H- and ⁴⁹C-NMR spectra were determined on a Jeol FX 90 Q (90 MHz) and in case of <u>2g</u> on a Varian (300 MHz) spectrometer. Mass spectra were made on a Jeol JMS-D-100 mass spectrometer. Irradiations at λ >290 nm were carried out with a 400 W high pressure mercury lamp with a cylindrical Pyrex light filter 1.5 mm thick.

Compounds <u>la-g</u> were prepared according to the literature method⁵.

Synthesis of 4-N-(1-deuterio-alkyl)cytosines 2a-g

Dry <u>1</u> (250 mg) was dissolved in deuterium oxide and the solution was evaporated to dryness in vacuum. Then the residue was dissolved in deuterium oxide-acetone (1:1, 100 ml) and irradiated under dry nitrogen atmosphere for 15-50 min, until TLC showed disappearance of <u>1</u>. After irradiation the solution was evaporated, dissolved in water and again evaporated to dryness. The residue was subjected to chromatography on a silica gel column which eluted with chloroform-methanol 7:3 (v/v) gave <u>2</u>. Recrystallization from water-ethanol afforded analytically pure samples of the products.

In case of <u>1</u>g instead of deuterium oxide methanol-d was used due to poor solubility of <u>1</u>g in deterium oxide.

⁴H-NMR (DMSO-d_g) δ 2.74 (d, 2H, -CDH₂), 5.68 (d, 1H, C⁵-H), 7.30 (d, 1H, C⁶-H), 7.78 (t, 1H, N⁴-H), 10.40 (br s, 1H, N⁴-H). ⁴⁹C-NMR (DMSO-d_g) δ 26.39 (t, -CDH₂), 93.41 (C⁵), 140.98 (C⁶), 156.96 (C²), 164.98 (C⁴). MS, m/z (rel. int.) 126 (100), 110 (11), 96 (15), 82 (21). <u>2b</u>: ⁴H-NMR (DMSO-d_g) δ 1.08 (d, 3H, CH₂), 2.97-3.24 (m, 1H, CDH), 5.64

(d, 1H, C^{5} -H), 7.27 (d, 1H, C^{6} -H), 7.72 (d, 1H, N^{6} -H), 10.33 (br s, 1H, № -H). 19 C-NMR (DMSO-d₂) & 14.09 (CH₂), 34.08 (t, CDH), 93,79 (C⁵), 141.14 (C^{6}) , 157.39 (C^{2}) , 164.43 (C^{4}) . MS, m/z (rel. int.) 140 (100), 125 (50), 111 (50), 95 (27). 2c: ⁴H-NMR (DMSO-d_) δ 0.88 (d, 6H, CH_a), 1.61-1.99 (m, 1H, CH), 3.04 (m, 1H, CDH), 5.66 (d, 1H, C⁵-H), 7.26 (d, 1H, C⁶-H), 7.62 (d, 1H, $N^{4}-H$), 10.31 (br s, 1H, $N^{4}-H$). ¹⁹C-NMR (DMSO-d_) δ 20.05 (two CH_), 27.36 (CH), 46.70 (t, CDH), 93.46 (C^5) , 141.09 (C^6) , 156.85 (C^2) , 164 76 (C^4) . MS, m/z (rel. int.) 168 (34), 153 (14), 125 (100), 111 (45). 2d : ¹H-NMR (DMSO-d_x) δ 3.36 (m, 1H, CDH), 3.53 (d, 2H, CH₂), 4.34 (br s 1H, OH), 5.77 (d, 1H, C^{5} -H), 7.35 (d, 1H, C^{6} -H), 7.89 (d 1H, $N^{4}-H$, 10.50 (br s, 1H, $N^{4}-H$). ¹⁸C-NMR (DMSO-d₂) δ 42.23 (t, CDH), 59.55 (CH₂), 93.79 (C⁵), 141.25 (C°) , 157.23 (C^{2}) , 164.76 (C°) . MS, m/z (rel. int.) 156 (3), 138 (95), 137 (100), 126 (10), 125 (22), 112 (55), 111 (45). 2e: ¹H-NMR (DMSO-d₂) & 2.46 (d, 2H, CH₂), 3.37 (m, 1H, CDH), 5.60 (d, 1H, C^{5} -H), 7.25 (d, 1H, C^{6} -H), 7.64 (br s, 1H, N^{4} -H), 10.24 (br s, 1H, №⁴-H). ¹³C-NMR (DMSO-d₂) δ 33.32 (CH₂), 35.49 (t, CDH), 93.13 (C⁵), 141.30 (C^{\bullet}) , 156.48 (C^{2}) , 164.49 (C^{\bullet}) , 172.73 (C=0). MS, m/z (rel. int.) 166 (9), 138 (5), 137 (5), 125 (3), 111 (38), 73 (100). <u>2f</u> : ¹H-NMR (DMSO-d₂) & 2.83 (d, 2H, CH₂), 3.53 (m, 1H, CDH), 5.75 (d, 1H, C^{5} -H), 7.25-7.53 (m, 6H, C^{6} -H and $C_{s}H_{s}$), 7.99 (br s, 1H, $N^{4}-H$, 10.31 (br s, 1H, $N^{4}-H$).

¹³C-NMR (DMSO-d) ర 34.46 (CH_), CDH signals are covered by DMSO-d 93.68 (C^{5}), 125.97 ($C_{e}H_{e}$), 128.11 ($C_{e}H_{e}$), 128.52 ($C_{e}H_{e}$), 139.35 $(C_{eH_{\pi}})$, 141.14 (C^{σ}) , 157.01 (C^{2}) , 164.43 (C^{4}) . MS, m/z (rel. int.) 216 (4), 125 (15), 112 (14), 105 (49), 91 (100). 2g: ⁴H-NMR (CD₂-OD) & 3.02 (d, 2H, CH₂), 3.67 (m, 1H, CDH), 5.73 (d, 1H, C^{5} -H), 6.98 (dd, 1H, $C^{5'}$ -H), 7.03-7.17 (m, 2H, $C^{2'}$ -H and $C^{\sigma'}-H$, 7.27 (d, 1H, $C^{\tau'}-H$), 7.32 (d, 1H, $C^{{\bullet'}}-H$), 7.55 (d, 1H, С^Ф-Н). ¹⁹C-NMR (CD₂OD) δ 28.50 (CH₂), 44.85 (t, CDH), 99.23 (C⁵), 115.02 $(C^{7'})$, 116.02 $(C^{5'})$, 122.10 $(C^{5'})$, 122.95 $(C^{4'})$, 125.05 $(C^{5'})$, 126.23 $(C^{2'})$, 131.60 $(C^{9'})$, 140.92 $(C^{9'})$, 144.69 $(C^{6'})$, 163.41 (C^2) , 169.41 (C^4) . MS, m/z (rel. int.) 255 (1), 145 (9), 144 (16), 130 (48), 126 (70), 111 (100).

ACKNOWLEDGEMENT

This work was supported by the Grant RP II 13.2.3.

REFERENCES

- 1. De Clerg E. Pure Appl. Chem. 55: 623 (1983).
- 2. Robins R.K. Chem. Eng. News <u>64</u>: 28 (1986).
- Hall R.H. The Modified Nucleosides in Nucleic Acids, Columbia University Press, New York 1971, p. 295.
- Celewicz L., Spychała J., Golankiewicz K. Synth. Commun. (in the press).
- 5. Ueda T., Fox J.J. J. Med. Chem. 6: 697 (1963).